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When a finite pulse of plasma expands into a magnetized background plasma,
MHD predicts the pulse expel background plasma and its B-field—i.e. cause a
magnetic “bubble”. 

The expanding plasma is confined within the bubble, later to escape down
the B-field lines.  MHD suggests that the debris energy goes to expelling
the B-field from the bubble volume and kinetic energy of the displaced background.

For HANEs, this is far from the complete story.

Overview: Decoupled Ions in HANES
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The implications are:
1) the magnetic bubble is not as large as expected and
2) the debris is no longer confined within the magnetic bubble.

For many realistic HANE regimes, the long mean-free-path for collisions necessitates
a Kinetic Ion Simulation Model (KISM).  The most obvious effect is that the debris 
plasma can decouple and slip through the background plasma.
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Consider a HANE-relevant debris pulse into the ambient ionospheric density
at 400 km altitude.  For typical densities (here 3e5 O+1 ions/cm3), a STARFISH
relevant explosion produces magnetic bubbles such as these
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ambient densities, charge state +1

Just U+1 Debris & O+1

background ionosphere

Today we focus
on the early-time
coupling of debris
ions to the
background plasma

“Near” MHD limit Kinetic limit

Brecht, S. H., D. W. Hewett, and D. J. Larson (2009),  “A magnetized, spherical plasma 
expansion in an inhomogeneous plasma: Transition from super- to sub-Alfvénic”, Geophys. 
Res. Lett., 36, L15105, doi:10.1029/2009GL038393, 6 August 2009 

Traditional MHD Modeling of HANES
Misses Important Physics
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Parameter changes towards more realistic physics lead to interesting
changes in coupling of the debris to the ionosphere.

1debrisZ 2debrisZ

Ion debris decoupling is very sensitive to the charge states 
and drives a requirement for improved atomic physics

ambient

1debrisZ

100x ambient

1debrisZ

Traditional modeling Flash ionization More realistic
debris charge state

Introducing More Realism reveals important
non-MHD behavior
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This Physics is easier to see in 1-D
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Initial debris configuration:
vr=2e8 cm/sec    v=0.
homogeneous , 20 km
radius debris “puff”
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Here is the same physics with added background
for a typical coupled & decoupled case
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A run with U slipping through O reveals
what’s important for decoupling

It is just this E that gives the 
ExB drift at the Alfvén speed.

And the criterion for 
decoupling is...
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Essential piece is positive E
due to debris outflow in quasi-
neutral equations

U+1 moves out in spite of 
negative Er

U+1 slips through
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1debrisZ

We developed a simple criterion for when Kinetic 
Ion Models are essential for modeling HANE

2debrisZ

Higher debris charge
states couple more
strongly

Debris “decouples” 
depending on
background electron density
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New Modeling and Impact

Ion debris decoupling is very sensitive to the charge states 
and drives a requirement for improved atomic physics

Just U+1 Debris & O+1

background ionosphere
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Consider the fields generated by the debris
in this quasi-neutral, collisionless plasma
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so what matters is
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the expression for E becomes

 ei JJBc


 4

The debris generates electric fields as it passes through the background,
however not in the “obvious” directions. 
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Consider how a background ion responds
to these fields as the debris passes
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With just the azimuthal field
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The background will be left behind if
it acquires too little “speed”
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To coupling, the background ions must acquire 
enough velocity to remain in front of the debris

The secret of the decoupling lies in the 
1) magnitude of
2) time it spends in this field
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Another way to look at this...
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Look at the ratio

A series of runs with increasing       shows
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is not quite the whole story
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Higher charge state ZB (smaller
gyro-radius), enhances debris coupling
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that shows the observed additional dependence on background charge state.

Enhanced coupling leads to another
threshold that plays in debris coupling
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Summary: Ion Decoupling in
Magnetized Plasma Explosions

This decoupling has interesting implications for both EMP and belt pumping.

Super Alfvénic debris HANE expansions into ionosphere have been shown 
computationally to decouple from the ionosphere.

Simple, linear arguments have been developed that suggest threshold conditions
required for decoupling (or non-fluid-like behavior) to occur.

Take away concepts:
Even in linear analysis, finite gyro-radii effect matter.
Threshold seem to apply species by species

(the species in question is the “debris”, all others are part of the “background”)
MHD/Fluid codes will not see these effects
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Reconsideration of the STARFISH event suggest that these threshold conditions are 
relevant, and strongly dependent on the initial parameters of the HANE event.


